EXELIZ

Parallel programming for supercomputing

Daniel Muinoz-Santiburcio
Univ. Politécnica de Madrid

http://www.exeliz.com

EXELIZ

Parallel programming for supercomputing

Daniel Muinoz-Santiburcio
Univ. Politécnica de Madrid

An Introduction course thinking in the user’s needs:
Tips, tricks and good practices for programming in supercomputers

http://www.exeliz.com

Fundamentals

What is a supercomputer?

A supercomputer is usually composed of:

Racks
— Nodes
— Chips + Memory
— Cores (CPUs)

OPA Single port (to shuttle)

2 x 10GbE (to Shuttle)

96GB RAM (12 x 8GB 2667Mhz DIMM) /
384GB RAM (12 x 32GB 2667Mhz DIMM)

2 x Intel Skylake 24C
2.0/2.1Ghz 145W
(SKP1)

1 x 240GB Intel s3520 SSD

KVM (not shown in the pic,
occupy HDD tray)

Fundamentals

Important points to know about a supercomputer

- Know the hardware. E.g.: 1 node = 2 x (Intel Xeon silver 4316 @ 2.30 GHz, 20c)

- Hyperthreading (advertised as e.g. 2 threads/core) is not necessarily important

- Details like memory, interconnection (between nodes) and storage/filesystem are important
- A supercomputer is different from a farm (e.g. good vs. bad interconnection)

- Access details may be important (access via VPN or not, ssh keys, etc.)

- The Support team is extremely important

- Try to ask colleagues about experience in a given supercomputer before applying

Fundamentals

Important points to know about a supercomputer

- Details like {G/T/P/E}FLOPS are usually not important
- Sometimes "CPU/processor” referes to the chip, sometimes to each core
- Computing/CPU time is almost always measured in core-hours

- Know the rules for accounting the computing time
(e.g. using less than 1 node accounts like using 1 full node?)

- Computing time is precious: please be responsible
- Try to run with the optimum number of nodes

- Try to use the computer when it is idle

Fundamentals

Important points to know about a supercomputer

- The software is hugely important: know what is already installed and running

- There is a huge difference between using an off-the-shelf code and your own code

- Always know about compilers and libraries (what is installed vs. what you need)

- Particular versions and combinations of versions of compilers/libraries may be crucial

- Always document what you need

- Again, Support team is extremely important

Fundamentals

Do | need parallel computing?

- Parallel computing consists in taking advantage of the physical architecture of the
computer to solve a problem quickly and efficiently

- Not all problems can be nicely parallelized. E.g. of best case scenario: matrix multiplication
- You must know the code and the nature of the problem
- Always RTFM (Read The Fine Manual): maybe there is (hidden) info about parallelization

- You may need a supercomputer not because of the cores, but because of the memory

Fundamentals

EXELIZ

Some experience-based info about parallelization

- Usually, 1 node is the sweetspot for efficiency (performance always measured w.r.t. 1 node)
- In general, try to avoid using less than 1 node. Why:

a) Possible performance problems because of different jobs/users in the same node

b) Possible "cascade” effects as a consequence of (a): jobs "splitting” among nodes

c) Possibly you will be accounted for the full node (remember: know the rules)

- (a),(b) should not happen if the machine is well configured: again role of Support
- Know whether the nodes are assigned fully/exclusively

- The parallelization within 1 node must be better than for > 1 node (intercommunication)
... though it’s possible that you get almost perfect parallelization for more nodes

- Some machines have specially efficient combinations of nodes (e.g. multiples of 3)

Fundamentals

Some experience-based info about parallelization

- Using a lot of nodes is not always (actually almost never) better:

- Probability of crashes/errors (e.g. because of switch/node failures) increases with # of nodes:
each crash leads to lost data and CPU time

- "Best case” scenario: crash kills immmediately the job, dissapears of queue system

- Bad case scenario: the executable stops running/printing, but stays in queue as
"Running”: blocks resources, and you'll be accounted that computing time

- Worst case scenario: job apparently ends fine but some error caused wrong results
(rare but can happen)

- Always monitor your jobs for errors (read the full output!)

- Be careful with the Input/Output: too much writing slows down the job

Fundamentals

Tips for compiling and testing

- When you are compiling any code, document everything (versions of compilers and libraries,
particular order of loaded modules, errors...)

- Document especially well the procedure that compiles the code successfully (in particular,
store configuration files, module info and Makefiles like treasures)

- Prepare a "pet job” for your code, which can run fast but demanding enough to check the
parallelization (e.g. something that can run in 1-4 nodes in few minutes).

- Document the output and the timings of that job for every machine
- Always check the reproducibility of your "pet job” in every machine (results and timings):

- Discrepancies serve to discover configuration / compilation problems!

MPI and OpenMP

Basics

- There are two main frameworks for writing parallel code: MPI and OpenMP
(do not confuse with "OpenMPI”, which is an open-source implementation for MPI)

- In both, there are compilers for Fortran, C and C++

- If the code is not Fortran or C/C++, there may be other options:
- Interpreted languages (e.g. Python, R, Matlab) with multithreading (over MPI/OpenMP)
- CUDA (for GPUSs)
- Others

- Writing a parallel code is not at all straightforward: very different from the serial version

- There may (surely will) be parts that must be serial

- Coding for MPI and OpenMP is quite different

OpenMP EXELIZ

Basics

- OpenMP = "Open Multi Processing”

- For shared memory machines: it can use up to 1 node

- For beginners seems easier and more natural than MPI
- The computation is distributed among "threads” (e.g. each core runs 1 thread)
- All threads have access to the same memory:

- All threads can read/write to the same variables!

- You can enforce "private” variables for each thread

OpenMP k=

SOLUTIONS

Basics

- "Fork-join” model: seems a natural way of tackling a problem
1) program starts as serial execution: 1 master thread

2) create more threads when arriving to a parallel region
3) when finished, the other threads disappear and master keeps running

Team of threads Team of threads

—-El—El—

EXELIZ

Hello World in OpenMP (Fortran90 example)

program hello

use omp_lib

implicit none

write(*,*) " Hello! I am thread number ", OMP_get thread num()

write(*,*) " We could be up to ", OMP_get max threads() ," more threads"
write(*,*) " Currently there are ", OMP_get num threads() ," threads in total”
1Somp parallel

write(*,*) " I am thread number ", OMP_get_thread num(),"” out of ", OMP _get num threads(), " threads in total"
!1Somp end parallel

write(*,*) " Hello! I am thread number ", OMP_get thread num()

write(*,*) " We could be up to ", OMP_get max_threads() ,"more threads"
write(*,*) " Currently there are ", OMP_get num threads() ," threads in total”

end program hello

OpenMP

EXELIZ

Hello World in OpenMP: set the OMP_NUM_THREADS variable

Helle! I am thread number)

We could be up to 4 more threads
Currently there are 1 threads in total
I am thread number out of

I am thread number out of

I am thread number out of

I am thread number out of

Hello! I am thread number i}

We could be up to 4 more threads
Currently there are 1 threads in total

daniel@nostromo:~/WORK/curso_UCAfcode$
daniel@nostromo:~/WORK/curso_UCA/code$S export OMP_NUM THREADS=6

daniel@nostromo:~/WORK/curso_UCA/codeS ./hello omp.exe
Hello! I am thread number)
We could be up to 6 more threads

Currently there are 1 threads in total
I am thread number out of

am thread number out of

am thread number out of

am thread number out of

am thread number out of
I am thread number out of
Helle! I am thread number)
We could be up to 6 more threads
Currently there are 1 threads in total

daniel@nostromo:~/WORK/curso_UCAfcode$ [

daniel@nostromo:~/WORK/curso_UCA/codeS gfortran -fopenmp hello omp.f98 -o hello omp.exe
daniel@nostromo:~/WORK/curso_UCAfcode$ export OMP_NUM_THREADS=4
daniel@nostromo:~/WORK/curso_UCA/codeS .fhello omp.exe

threads
threads
threads
threads

threads
threads
threads
threads
threads
threads

OpenMP

EXELIZ

Hello World in OpenMP: set the OMP_NUM_THREADS variable

daniel@nostromo:~/WORK/curso_UCA/code$ echo $SOMP_NUM_THREADS

daniel@nostromo:~/WORK/curso_UCA/codeS ./hello_omp.exe
Hello! I am thread number]
We could be up to 16 more threads
Currently there are 1 threads in total
I am thread number out of

am thread number out of

am thread number out of

am thread number out of

am thread number out of

am thread number out of

am thread number out of

am thread number out of

am thread number out of

am thread number out of

am thread number out of

am thread number out of

am thread number out of

am thread number out of

am thread number out of

I am thread number 18 out of

Hello! I am thread number]

We could be up to 16 more threads

Currently there are 1 threads in total

[=y
WuURE = LoD W
== W= = R = = =]

(=0 = (= = R = (=]

I
I
I
I
I
I
I
I
I
I
I
I
I
I

BRBRBRRR R R R R
) v

o

threads 1
threads 1
threads 1
threads i
threads 1
threads 1
threads 1
threads i
threads 1
threads 1
threads 1
threads 1
threads 1
threads 1
threads i
threads 1

daniel@nostromo:~/WORK/curso_UCAfcode$S export OMP_NUM_THREADS=2
daniel@nostromo:~/WORK/curso_UCA/code$ echo SOMP_NUM_THREADS

2
daniel@nostromo:~/WORK/curso_UCA/codeS ./hello_omp.exe
Hello! I am thread number]
We could be up to 2 more threads
Currently there are 1 threads in total
I am thread number ® out of 2
I am thread number 1 out of 2
Hello! I am thread number]
We could be up to 2 more threads
Currently there are 1 threads in total
daniel@nostromo:~/WORK/curso_UCA/fcode$

threads in total
threads in total

Ubuntu

Device Name

Memory

Processor AMD® Ryzen7

Graphics NVIDIA Corporation TU106 [GeForce RTX 2

Disk Capacity

M PI EXELIZ

Basics

- MPI = "Message Passing Interface”

- For distributed memory machines: can use whatever number of nodes/cores

- The computation is distributed among "processes” (e.g. each core runs 1 process)
- All the processes start as soon as MPI is initialized

- By default, each process has its own private memory

- Each process must communicate with the others in order to work

- We must say which process does whatever operation (otherwise all do it)

M PI EXELIZ

Hello World in MPI (Fortran90 example)

program hello
implicit none
include 'mpif.h'
integer id
integer ierr
integer num_procs
call MPI Init (ierr)

call MPI_Comm _rank (mpi_comm world, id, ierr)
call MPI_Comm _size (MPI_COMM _WORLD, num_procs, ierr)

write(*,*) " I am process number ", id, " of a total of ", num procs

if (id .eq. @) write(*,*) " I am the master process
call MPI_Finalize (ierr)

end program hello

MPI

EXELIZ

Hello World in MPI (Fortran90 example)

daniel@nostromo:~/WORK/curso_UCA/code$
daniel@nostromo:~/WORK/curso_UCA/code$

I am

I am the master process with id =

I am

process number

process number

0

1

of

of

daniel@nostromo:~/WORK/curso_UCA/code$

am
am
am
am
am
am
am
am
am

process number
process number
process number

the master process with id =

process number
process number
process number
process number
process number

5

2

of
of
of

of
of
of
of
of
daniel@nostromo:~/WORK/curso_UCA/code$

mpif9® hello mpi.f9@ -o hello mpi.exe
mpirun -n 2 hello _mpi.exe
a total of 2

§]
a total of 2
mpirun hello mpi.exe
a total of
a total of
a total of

7]
a total of
a total of
a total of
a total of
ﬁ total of

MPI and OpenMP EXELIZ

Compiling / running with MPI and OpenMP in supercomputers

- OpenMP is usually supported by the "regular’ compilers (e.g. gfortran in a regular Ubuntu):
> gfortran -fopenmp program.f90 -o program.exe
> ifort -qopenmp program.f90 -o program.exe
- MPI requires a specific compiler (e.g. OpenMPI, Intel compiler suite)
> mpif90 program.f90 -o program.exe
- "mpif90” can be either OpenMPI or Intel

- Always know which modules are loaded!

MPI and OpenMP EXELIZ

Compiling / running with MPI and OpenMP in supercomputers

upm84318@login2:~> module list

Currently Loaded Modules:
1) intel/2017.4 2) impi/2017.4 3) mkl/2017.4 4) bsc/1.®

upm84318@login2:~> which mpifoe
Japps/INTEL/2017.4/impi/2017.3.196/bin64/mpifo0
upm84318@login2:~> module purge
remove mk1/2017.4 (LD_LIBRARY_ PATH)
remove impi/2017.4 (PATH, MANPATH, LD_LIBRARY PATH)
upm84318@Llogin2:~> module load openmpi
Cannot load module "openmpi/f1.10.7". At least one of these module(s) must be loaded:
gcc/4.9.4 intel

While processing the following module(s):
Module fullname Module Filename

openmpi/1.10.7 fapps/modules/modulefiles/environment/openmpi/1.10.7

upm84318@login2:~> module load gcc/7.1.0

Set GNU compilers as MPI wrappers backend
upm84318@Llogin2:~> module load openmpil

load openmpi/1.18.7 (PATH, MANPATH, LD LIBRARY PATH)
upm84318@login2:~> which mpifoe
/apps/OPENMPI/1.10.7/GCC/7.1.0/bin/mpif9e
upm84318@loginzZ:~> [{

MPI and OpenMP EXELIZ

Compiling / running with MPI and OpenMP in supercomputers

- Some compilers / executables may produce different results
mpif90 vs mpiifort ?
mpirun vs mpiexec ?

upm84318@Llogin2:~> module list

Currently Loaded Modules:
1) intel/2017.4 2) impi/2017.4 3) mkl/2017.4 4) bsc/1.0

upm84318@login2:~> mpi

mpicalc mpiexec mpifc mpiicpc mpi-selector-menu
mpicc mpiexec.hydra mpigcc mpiifort mpitune
mpicleanup mpif77 mpigxx mpirun mpivars.csh
mpicxx mpifoe mpiilcc mpi-selector mpivars.sh
upm84318@login2:~= [f

MPI and OpenMP EXELIZ

Hybrid MPI+OpenMP codes

- ldea: use several nodes with MPI parallelization between the nodes, and OpenMP
parallelization within each node

- Seems the natural way of doing it: mimicks the physical structure of the supercomputer
- Usually assumed as the most efficient strategy

- However, in practice it happens quite often that pure MPI is more efficient

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

