
 http://www.exeliz.com

Parallel programming for supercomputing

Daniel Muñoz-Santiburcio
Univ. Politécnica de Madrid

 http://www.exeliz.com

Parallel programming for supercomputing

Daniel Muñoz-Santiburcio
Univ. Politécnica de Madrid

An Introduction course thinking in the user’s needs:
Tips, tricks and good practices for programming in supercomputers

 Fundamentals
What is a supercomputer?

A supercomputer is usually composed of:

 Racks
└ Nodes

 └ Chips + Memory
 └ Cores (CPUs)

 Fundamentals
Important points to know about a supercomputer

- Know the hardware. E.g.: 1 node = 2 x (Intel Xeon silver 4316 @ 2.30 GHz, 20c)

- Hyperthreading (advertised as e.g. 2 threads/core) is not necessarily important

- Details like memory, interconnection (between nodes) and storage/filesystem are important

- A supercomputer is different from a farm (e.g. good vs. bad interconnection)

- Access details may be important (access via VPN or not, ssh keys, etc.)

- The Support team is extremely important

- Try to ask colleagues about experience in a given supercomputer before applying

 Fundamentals
Important points to know about a supercomputer

- Details like {G/T/P/E}FLOPS are usually not important

- Sometimes ”CPU/processor” referes to the chip, sometimes to each core

- Computing/CPU time is almost always measured in core-hours

- Know the rules for accounting the computing time
 (e.g. using less than 1 node accounts like using 1 full node?)

- Computing time is precious: please be responsible

- Try to run with the optimum number of nodes

- Try to use the computer when it is idle

 Fundamentals
Important points to know about a supercomputer

- The software is hugely important: know what is already installed and running

- There is a huge difference between using an off-the-shelf code and your own code

- Always know about compilers and libraries (what is installed vs. what you need)

- Particular versions and combinations of versions of compilers/libraries may be crucial

- Always document what you need

- Again, Support team is extremely important

 Fundamentals
Do I need parallel computing?

- Parallel computing consists in taking advantage of the physical architecture of the
computer to solve a problem quickly and efficiently

- Not all problems can be nicely parallelized. E.g. of best case scenario: matrix multiplication

- You must know the code and the nature of the problem

- Always RTFM (Read The Fine Manual): maybe there is (hidden) info about parallelization

- You may need a supercomputer not because of the cores, but because of the memory

 Fundamentals
Some experience-based info about parallelization

- Usually, 1 node is the sweetspot for efficiency (performance always measured w.r.t. 1 node)

- In general, try to avoid using less than 1 node. Why:

a) Possible performance problems because of different jobs/users in the same node
b) Possible ”cascade” effects as a consequence of (a): jobs ”splitting” among nodes
c) Possibly you will be accounted for the full node (remember: know the rules)

- (a),(b) should not happen if the machine is well configured: again role of Support
- Know whether the nodes are assigned fully/exclusively

- The parallelization within 1 node must be better than for > 1 node (intercommunication)
… though it’s possible that you get almost perfect parallelization for more nodes

- Some machines have specially efficient combinations of nodes (e.g. multiples of 3)

 Fundamentals
Some experience-based info about parallelization

- Using a lot of nodes is not always (actually almost never) better:

- Probability of crashes/errors (e.g. because of switch/node failures) increases with # of nodes:
each crash leads to lost data and CPU time

- ”Best case” scenario: crash kills immediately the job, dissapears of queue system
- Bad case scenario: the executable stops running/printing, but stays in queue as
 ”Running”: blocks resources, and you’ll be accounted that computing time
- Worst case scenario: job apparently ends fine but some error caused wrong results

 (rare but can happen)

- Always monitor your jobs for errors (read the full output!)

- Be careful with the Input/Output: too much writing slows down the job

 Fundamentals
Tips for compiling and testing

- When you are compiling any code, document everything (versions of compilers and libraries,
particular order of loaded modules, errors...)

- Document especially well the procedure that compiles the code successfully (in particular,
store configuration files, module info and Makefiles like treasures)

- Prepare a ”pet job” for your code, which can run fast but demanding enough to check the
parallelization (e.g. something that can run in 1-4 nodes in few minutes).

- Document the output and the timings of that job for every machine

- Always check the reproducibility of your ”pet job” in every machine (results and timings):

- Discrepancies serve to discover configuration / compilation problems!

 MPI and OpenMP
Basics

- There are two main frameworks for writing parallel code: MPI and OpenMP
(do not confuse with ”OpenMPI”, which is an open-source implementation for MPI)

- In both, there are compilers for Fortran, C and C++

- If the code is not Fortran or C/C++, there may be other options:
- Interpreted languages (e.g. Python, R, Matlab) with multithreading (over MPI/OpenMP)
- CUDA (for GPUs)
- Others

- Writing a parallel code is not at all straightforward: very different from the serial version

- There may (surely will) be parts that must be serial

- Coding for MPI and OpenMP is quite different

 OpenMP
Basics

- OpenMP = ”Open Multi Processing”

- For shared memory machines: it can use up to 1 node

- For beginners seems easier and more natural than MPI

- The computation is distributed among ”threads” (e.g. each core runs 1 thread)

- All threads have access to the same memory:

- All threads can read/write to the same variables!

- You can enforce ”private” variables for each thread

 OpenMP
Basics

- ”Fork-join” model: seems a natural way of tackling a problem

1) program starts as serial execution: 1 master thread
2) create more threads when arriving to a parallel region
3) when finished, the other threads disappear and master keeps running

 OpenMP
Hello World in OpenMP (Fortran90 example)

 OpenMP
Hello World in OpenMP: set the OMP_NUM_THREADS variable

 OpenMP
Hello World in OpenMP: set the OMP_NUM_THREADS variable

 MPI
Basics

- MPI = ”Message Passing Interface”

- For distributed memory machines: can use whatever number of nodes/cores

- The computation is distributed among ”processes” (e.g. each core runs 1 process)

- All the processes start as soon as MPI is initialized

- By default, each process has its own private memory

- Each process must communicate with the others in order to work

- We must say which process does whatever operation (otherwise all do it)

 MPI
Hello World in MPI (Fortran90 example)

 MPI
Hello World in MPI (Fortran90 example)

 MPI and OpenMP
Compiling / running with MPI and OpenMP in supercomputers

- OpenMP is usually supported by the ”regular” compilers (e.g. gfortran in a regular Ubuntu):

> gfortran -fopenmp program.f90 -o program.exe

> ifort -qopenmp program.f90 -o program.exe

- MPI requires a specific compiler (e.g. OpenMPI, Intel compiler suite)

> mpif90 program.f90 -o program.exe

- ”mpif90” can be either OpenMPI or Intel

- Always know which modules are loaded!

 MPI and OpenMP
Compiling / running with MPI and OpenMP in supercomputers

 MPI and OpenMP
Compiling / running with MPI and OpenMP in supercomputers

- Some compilers / executables may produce different results
mpif90 vs mpiifort ?
mpirun vs mpiexec ?

 MPI and OpenMP
Hybrid MPI+OpenMP codes

- Idea: use several nodes with MPI parallelization between the nodes, and OpenMP
parallelization within each node

- Seems the natural way of doing it: mimicks the physical structure of the supercomputer

- Usually assumed as the most efficient strategy

- However, in practice it happens quite often that pure MPI is more efficient

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

